273 research outputs found

    Foreground separation methods for satellite observations of the cosmic microwave background

    Get PDF
    A maximum entropy method (MEM) is presented for separating the emission due to different foreground components from simulated satellite observations of the cosmic microwave background radiation (CMBR). In particular, the method is applied to simulated observations by the proposed Planck Surveyor satellite. The simulations, performed by Bouchet and Gispert (1998), include emission from the CMBR, the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free-free and synchrotron emission. We find that the MEM technique performs well and produces faithful reconstructions of the main input components. The method is also compared with traditional Wiener filtering and is shown to produce consistently better results, particularly in the recovery of the thermal SZ effect.Comment: 31 pages, 19 figures (bitmapped), accpeted for publication in MNRA

    Morphology of Weak Lensing Convergence Maps

    Get PDF
    We study the morphology of convergence maps by perturbatively reconstructing their Minkowski Functionals (MFs). We present a systematics study using a set of three generalised skew-spectra as a function of source redshift and smoothing angular scale. Using an approach based on pseudo-SℓS_{\ell}s (PSL) we show how these spectra will allow reconstruction of MFs in the presence of an arbitrary mask and inhomogeneous noise in an unbiased way. Our theoretical predictions are based on a recently introduced fitting function to the bispectrum. We compare our results against state-of-the art numerical simulations and find an excellent agreement. The reconstruction can be carried out in a controlled manner as a function of angular harmonics ℓ\ell and source redshift zsz_s which allows for a greater handle on any possible sources of non-Gaussianity. Our method has the advantage of estimating the topology of convergence maps directly using shear data. We also study weak lensing convergence maps inferred from Cosmic Microwave Background (CMB) observations; and we find that, though less significant at low redshift, the post-Born corrections play an important role in any modelling of the non-Gaussianity of convergence maps at higher redshift. We also study the cross-correlations of estimates from different tomographic bins

    Planck intermediate results. XLI. A map of lensing-induced B-modes

    Get PDF
    The secondary cosmic microwave background (CMB) BB-modes stem from the post-decoupling distortion of the polarization EE-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced BB-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB BB-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization EE-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced BB-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) BB-mode map can be used to measure the lensing BB-mode power spectrum at multipoles up to 20002000. In particular, when cross-correlating with the BB-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced BB-mode power spectrum measurement at a significance level of 12 σ12\,\sigma, which agrees with the theoretical expectation derived from the Planck best-fit Λ\LambdaCDM model. This unique nearly all-sky secondary BB-mode template, which includes the lensing-induced information from intermediate to small (10â‰Čℓâ‰Č100010\lesssim \ell\lesssim 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial BB-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB BB-modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma

    Planck 2015 results: I. Overview of products and scientific results

    Get PDF
    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds

    Fractal Dimensions and Scaling Laws in the Interstellar Medium and Galaxy Distributions: a new Field Theory Approach

    Get PDF
    We develop a field theoretical approach to the cold interstellar medium (ISM) and large structure of the universe. We show that a non-relativistic self- gravitating gas in thermal equilibrium with variable number of atoms or fragments is exactly equivalent to a field theory of a scalar field phi(x) with exponential self-interaction. We analyze this field theory perturbatively and non-perturbatively through the renormalization group(RG).We show scaling behaviour (critical) for a continuous range of the physical parameters as the temperature. We derive in this framework the scaling relation M(R) \sim R^{d_H} for the mass on a region of size R, and Delta v \sim R^\frac12(d_H -1) for the velocity dispersion. For the density-density correlations we find a power-law behaviour for large distances \sim |r_1 - r_2|^{2D - 6}.The fractal dimension D turns to be related with the critical exponent \nu by D = 1/ \nu. Mean field theory yields \nu = 1/2, D = 2. Both the Ising and the mean field values are compatible with the present ISM observational data:1.4\leq D \leq 2. We develop a field theoretical approach to the galaxy distribution considering a gas of self-gravitating masses on the FRW background, in quasi-thermal equi- librium. We show that it exhibits scaling behaviour by RG methods. The galaxy correlations are computed without assuming homogeneity. We find \sim r^{D-3} .Thetheoryallowstocomputethethreeandhigherdensitycorrelatorswithoutanyassumption.WefindthattheconnectedN−pointsdensityscalesasr1N(D−3),when. The theory allows to compute the three and higher density correlators without any assumption.We find that the connected N-points density scales as r_1^{N(D-3)}, when r_1 >> r_i

    « Half dicht, half prose gheordineert » : vers et prose de moyen français en moyen néerlandais

    Get PDF
    In both French-speaking and Dutch-speaking literary cultures of the late Middle Ages, competition between poets produced a collective poetic expertise. To what extent, then, can such competition be identified across the two cultures, in translations of verse or prosimetrum compositions from Middle French into Middle Dutch? An examination of the Dutch translations reveals that verse is both a means to knowledge and an object of knowledge, in the target culture as well as the source culture. The diversity of translations shows that verse is not only a system that translators attempt to master, but also a formal supplement in ways that are unavailable to prose
    • 

    corecore